Control System Design by Graham C. Goodwin (PDF)

342

 

Ebook Info

  • Published: 2000
  • Number of pages: 944 pages
  • Format: PDF
  • File Size: 6.54 MB
  • Authors: Graham C. Goodwin

Description

Using a “how to do it” approach with a strong emphasis on real-world design, this book provides comprehensive, single-source coverage of the full spectrum of control system design. Each of the book’s 8 parts covers a specific area of control–ranging from signals and systems (Bode Diagrams, Root Locus, etc.), to SISO control (including PID and Fundamental Design Trade-offs) and MIMO systems (including Constraints, MPC, Decoupling, etc.). Features an abundance of real-world design examples drawn from the authors’ direct experience, and many real-world case studies divided into Industrial case studies and Laboratory systems (several of which are supported by a virtual laboratory using Java Applets on the book’s web page). All examples are supported by Matlab®. The Excitement of Control Engineering. Introduction to the Principles of Feedback. Modeling. Continuous Time Signals and Systems. Analysis of SISO Control Loops. Classical PID Control. Synthesis of SISO Controllers. Fundamental Limitations in SISO Control. Frequency Domain Design Limitations. Architectural Issues in SISO Control. Dealing with Constraints. Models for Sampled Data Systems. Digital Control. Hybrid Control. SISO Controller Parameterizations. Control Design Based on Optimization. Linear State Space Models. Synthesis via State Space Methods. Introduction to Nonlinear Control. Analysis of MIMO Control Loops. Exploiting SISO Techniques in MIMO Control. Design via Optimal Control Techniques. Model Predictive Control. Fundamental Limitations in MIMO Control. MIMO Controller Parameterizations. Decoupling. For anyone interested in Control System Design.

User’s Reviews

Editorial Reviews: From the Back Cover Much has been written about the need to revitalize control education. This book addresses the problem by providing a refreshing new approach to teaching control system design. The book strongly emphasizes real-world design, making it appropriate for the first-time learner as well as for engineers in industry as a technology refresher. The book has been used by the authors for both undergraduate and graduate courses at several universities. The authors’ experience is split evenly between academia and industry, which is reflected in the contents of the book. It is divided into 8 parts covering essential aspects in control, ranging from signals and systems (Bode diagrams, root locus, etc.), to SISO control (including PID and fundamental design tradeoffs), and MIMO systems (including constraints, MPC, decoupling, etc.).A key aspect of the book is the frequent use of real world design examples drawn directly from the authors’ industrial experience. These are represented by over 15 substantial case studies ranging from distillation columns to satellite tracking. The book is also liberally supported by modern teaching aids available on both an accompanying CD-ROM and Companion Website. Resources to be found there include MATLAB® routines for all examples; extensive PowerPoint lecture notes based on the book; and a totally unique Java Applet-driven “virtual laboratory” that allows readers to interact with the real-world case studies. About the Author GRAHAM GOODWIN has over 30 years of experience in the area of control engineering covering research, education and industry. He is the author of seven books, 500 papers and holds four patents. He was the foundation Chairman of a spin-off company and is currently Directory of a special research center dedicated to systems and control research.STEFAN GRAEBE’s career spans both academic and industrial positions. He was previously research coordinator in the Centre for Industrial Control Science at the University of Newcastle. He is currently head of the Department of Optimization and Automation for the Schwechat refinery of OMV—Austria.MARIO SALGADO received a Maters degree in Control from Imperial College and a Ph.D. from the University of Newcastle. He is currently an academic in the Department of Electronics at the Universidad Tecnica Frederico Santa Maria, Valparaíso—Chile. His interests include signal processing and control systems design. Excerpt. © Reprinted by permission. All rights reserved. PREFACEIntroduction to Control Engineering Control Engineering plays a fundamental role in modern technological systems. The benefits of improved control in industry can be immense. They include improved product quality, reduced energy consumption, minimization of waste material, increased safety levels, and reduction of pollution. A difficulty with the subject, however, is that some of the more advanced aspects depend on a sophisticated mathematical background. Arguably, mathematical systems theory is one of the most significant achievements of twentieth-century science, but its practical impact is only as important as the benefits it can bring. Thus, we include in this book a strong emphasis on design, ultimately striking a balance between theory and practice. It was the authors’ involvement in several industrial control-system design projects that provided part of the motivation to write this book. In a typical industrial problem, we found ourselves investigating fluid and thermal dynamics, experiencing the detrimental effects of nonconstant PLC scan rates, dealing with system integration and network communication protocols, building trust with plant operators, and investigating safe bumpless transfer schemes for testing tentative control designs on potentially dangerous plants. In short, we experienced the day-to-day excitement, frustration, set-backs, and progress in getting advanced control to contribute to a commercial company’s bottom line. This is not an easy task. Success in this type of venture typically depends on the application of a wide range of multidisciplinary skills; however, it is rewarding and exciting work for those who do it. One of the main aims of this book is to share this excitement with our readers. We hope to contribute to the development of skills and attitudes within readers and students that will better equip them to face the challenges of real-world design problems. The book is thus intended to contribute to the ongoing reform of the Control Engineering curriculum. This topic continues to receive considerable international attention as educators strive to convey the excitement and importance of control engineering. Indeed, entire issues of the IEEE Control Systems Magazine have been devoted to this theme. Reforming the curriculum will not, however, be done by books alone. It will be done by people: students, teachers, researchers, practitioners, publication and grant reviewers, and by market pressures. Moreover, for these efforts to be efficient and sustainable, the control engineering community will need to communicate their experiences via a host of new books, laboratories, simulations, and web-based resources. Thus, there will be a need for several different and complementary approaches. In this context, the authors believe that this book will have been successful if it contributes, in some way, to the revitalization of interest by students in the exciting discipline of control engineering. We stress that this is not a how-to book. On the contrary, we provide a comprehensive, yet condensed, presentation of rigorous control engineering. We employ, and thus require, mathematics as a means to model the process, analyze its properties under feedback, synthesize a controller with particular properties, and arrive at a design addressing the inherent trade-offs and constraints applicable to the problem. In particular, we believe that success in control projects depends on two key ingredients: (i) having a comprehensive understanding of the process itself, gained by studying the relevant physics, chemistry, and so on; and (ii) by having mastery of the fundamental concepts of signals, systems, and feedback. The first ingredient typically occupies more than fifty per cent of the effort. It is an inescapable component of the complete design cycle; however, it is impractical for us to give full details of the processes to which control might be applied, because they cover chemical plants, electromechanical systems, robots, power generators, and so on. We thus emphasize the fundamental control engineering aspects that are common to all applications and we leave readers to complement this emphasis with process knowledge relevant to their particular problem. Thus, the book is principally aimed at the second ingredient of control engineering. Of course, we do give details of several real-world examples, so as to put the methods into a proper context. The central theme of this book is continuous-time control; however, we also treat digital control in detail, because most modern control systems will usually be implemented on some form of computer hardware. This approach inevitably led to a book of larger volume than originally intended, but one with the advantage of providing a comprehensive treatment within an integrated framework. Naturally, there remain specialized topics that are not covered in the book; however, we trust that we provide a sufficiently strong foundation so that the reader can comfortably turn to the study of appropriate complementary literature. Goals Thus, in writing this book we chose as our principal goals the following: providing accessible treatment of rigorous material selected with applicability in mind;giving early emphasis to design, including methods for dealing with fundamental trade-offs and constraints;providing additional motivation through substantial interactive web-based support; anddemonstrating the relevance of the material through numerous industrial case studies. Indeed, the material in the book is illustrated by numerous industrial case studies with which the authors have had direct involvement. Most of these case studies were carried out, in collaboration with industry, by the Centre for Integrated Dynamics and Control (CIDAC) (a Commonwealth Special Research Centre) at the University of Newcastle. The projects that we have chosen to describe include the following: satellite trackingpH controlcontrol of a continuous casting machinesugar mill controldistillation column controlammonia-synthesis plant controlzinc coating-mass estimation in a continuous-galvanizing lineBISRA gauge for thickness control in rolling millsroll-eccentricity compensation in rolling millshold-up effect in reversing rolling millsflatness control in steel rollingvibration control Design is a complex process, one that requires judgment and iteration. The design problem normally is incompletely specified, sometimes is ill-defined, and many times is without solution. A key element in design is an understanding of those factors that limit the achievable performance. This naturally leads to a viewpoint of control design that takes account of these fundamental limitations. This viewpoint is a recurring theme throughout the book. Our objective is not to explore the full depth of mathematical completeness but instead to give enough detail so that a reader can begin applying the ideas as soon as possible. This approach is connected to our assumption that readers will have ready access to modern computational facilities, including the software package MATLAB-SIMULINK. This assumption allows us to put the emphasis on fundamental ideas rather than on the tools. Every chapter includes worked examples and problems for the reader. Overview of the Book The book is divided into eight parts. A brief summary of each of the parts is given here. Part I: The Elements This part covers basic continuous-time signals and systems and would be suitable for an introductory course on this topic. Alternatively, it could be used to provide review material before starting the study of control in earnest. Part II: SISO Control Essentials This part deals with basic single-input single-output (SISO) control, including classical proportional, integral and derivative (PID) tuning. This section, together with Part I, covers the content of many of the existing curricula for basic control courses. Part III: SISO Control Design This part covers design issues in SISO Control. We consider many of these ideas to be crucial to achieving success in practical control problems. In particular, we believe that the chapter dealing with constraints should be mentioned, if at all possible, in all introductory courses. Also, feedforward and cascade structures, which are covered in this part, are very frequently employed in practice. Part IV: Digital Computer Control This part covers material essential to the understanding of digital control. We go beyond traditional treatments of this topic by studying inter-sample issues. Part V: Advanced SISO Control This part could be the basis of a second course on control at an undergraduate level. It is aimed at the introduction of ideas that flow through to multi-input multi-output (MIMO) systems later in the book. Part VI: MIMO Control Essentials This part gives the basics required for a junior-level graduate course on MIMO control. In particular, this part covers basic MIMO system theory. It also shows how one can exploit SISO methods in some MIMO design problems. Part VII: MIMO Control Design This part describes tools and ideas that can be used in industrial MIMO design. In particular, it includes linear quadratic optimal control theory and optimal filtering. These two topics have major significance in applications. We also include a chapter on Model Predictive Control. We believe this to be important material, because of the widespread use of this technique in industrial applications. Part VIII: Advanced MIMO Control This final part of the book could be left for private study. It is intended to test the reader’s understanding of the other material by examining advanced issues. Alternatively, instructors could use this part to extend parts VI and VII in a more senior graduate course on MIMO Control. Using this Book This is a comprehensive book on control system design that can be used in many different course patterns. If one adopts the book for an early course on control, then the unused material is excellent reference material for later use in practice or for review. If one uses the book for a later course, then the early material gives an excellent summary of the basic building blocks on which the subject rests. The book can be used for many different course patterns. Some suggested patterns are outlined as follows: (i) Signals and Systems This would be taught from Part I of the book.(ii) Basic Control Theory This would typically be taught for Part II of the book, together with some material for Part I (depending on the student’s prior exposure to signals and systems) and some material from Part III. In particular, the chapter on design limitations (Chapter 8) requires only elementary knowledge of Laplace Transforms and gives students an understanding of those issues which limit achievable performance. This is an extremely important ingredient in all real-world control design problems. Also, Chapter 11 which deals with constraints is very important in practice. Finally, the ideas of feedforward and cascade architectures that are covered in Chapter 10 are central to solving real-world design problems.(iii) Digital Control This can be taught from Part IV. Indeed, we feel our treatment here is better focused on applications than many of the traditional treatments because of the emphasis we place on intersample behavior. In the various courses taught by the authors of this book some of the material on digital control is typically included in the Basic Control Theory Course. This is possible because the students are well prepared having taken a Signals and System course prior to the control course.(iv) Second Course on Control A second course on control typically includes an introduction to state space design, observers, and state-variable feedback. This material can be taught from Parts V to VII of the book. Part V is relatively straightforward and is intended to bridge the gap from single-input single-output systems (which are principally the focus of Parts I to IV) and multi-input multi-output systems (which are principally covered in Parts VI, VII, and VIII). We consider Chapter 22 on optimal control and filtering to be very important and have included in this chapter many real world design case studies. Also, Chapter 23 on Model Predictive Control is important as this technique is widely used in industrial control. Two of the authors (Goodwin and Salgado) have taught undergraduate and postgraduate courses of the type mentioned above, using draft versions of this book, in Australia and South America.Website We have created a comprehensive website to support the book. This website contains the following: Full Appendices (So that this material can be read at the same time as the printed text in the book.)Full Matlab Support (This can be downloaded and used to reproduce all of the designs in the book.)Interactive Java Laboratories (These illustrate the material in the book but can also be used for fun interaction.)Selected Solutions for Problems (This allows students to see how certain key problems can be solved. Of course instructors adopting the book will be sent a copy of the comprehensive solutions manual that covers every problem set in the book.)On-Line Forum (So that topics of general interest to control-system design can be raised and discussed.)An Errata Section (This is used to give details of any errors occurring in the book.)Extensive PowerPoint Slides (Approximately 2,500 slides are available for use with the book.) We see the use of this material as follows: For the Instructor We believe that the Matlab support and PowerPoint slides should be particularly helpful to an instructor. For example, it would be possible to teach the course entirely using the resources provided. Also, we have found that students enjoy using the Virtual Laboratories. These can be displayed in the classroom as part of a lecture or given to students to enhance their understanding of the material. For the Student We believe that the PowerPoint slides are an excellent and easily understood summary of the book which by-passes all unnecessary technicalities. Even if your instructor does not use these slides in his/her presentations, we consider that they are an excellent summary for study purposes. If you print them out and annotate them, then remembering the material should be easy. Also, students should enjoy the Java Applets. If you can understand the case studies covered by these applets then you will be well on the way to understanding this exciting subject. The website can be accessed at either of the following URLs: http://www.prenhall.com/goodwin and http://csd.newcastle.edu.au/control/ Alternatively, see the authors’ home pages for a link. Also note that the website is under continuous development, so the resources provided will continue to grow and evolve as time proceeds. Newcastle, Australia Valparaiso, Chile Vienna, Austria Read more

Reviews from Amazon users which were colected at the time this book was published on the website:

⭐I think that all control texts should be written this way. This text gives a very thorough explanation of SISO control and then very slowly transitions into MIMO control by introducing decentralized control. After decentralized control, cross-feed and more advanced MIMO techniques based on inverse dynamics are introduced. This text also covers fundamental limitations of control, which is important. There is also a lot of internet support and MATLAB examples.This text does a very good job of presenting mathematical topics which are not covered in many control texts in a palatable way. In some places, one might get lost or overwhelmed with the math, but stick with it and things will become clear. The math in this text is quite accurate and does not overemphasize or misrepresent the singular value unlike many other “advanced” controls texts.

⭐I had to buy it for a class so cannot compare to other books on same subject.

⭐This book really explains all the needed aspects of the controls word, from a more beginner view. It does get into some intermediate things but if I knew about this in undergrad I would have gotten it then.

⭐This was a required textbook for a intro grad controls class at Purdue and I felt it was an excellent text book. They give you enough info on the background stuff that if you want you can find other books that will go into more detail. It was very enjoyable read and I will definitely keep this book as reference.

⭐Do not buy a new one! it is too much money! it is hard to read! it’s ok if you use the book a one of your references.

⭐I bought this book for a Post grad Controls course. The book arrived quickly and was in reasonably good condition as indicated by the ‘shelf wear’ description. However, the book is very cryptic, there are very few well worked out examples. It assumes you know and remember all the background classic controls theory which was not my case. I think the Ogata is a better transition book.

⭐The best book in continuous time linear control theory you could wish for

⭐I am a professor in Control Systems, I really recommend this book for any student in this area

⭐Great book, but the quality of book delivered is horrenduous. I received the book in a bad, used condition because of which I ordered for a replacement. To my unpleasant surprise, the replacement also looked like it’s been used before. The cover pages are soiled and it feels like the Jack’s portrait book recovered from sea in the movie Titanic.

⭐No se pueden leer las fórmulas. Considero inaceptable que este problema se produzca en todos los libros técnicos de la plataforma Kindle

Keywords

Free Download Control System Design in PDF format
Control System Design PDF Free Download
Download Control System Design 2000 PDF Free
Control System Design 2000 PDF Free Download
Download Control System Design PDF
Free Download Ebook Control System Design

Previous articleMultiscale and Multiresolution Methods: Theory and Applications by Timothy J. Barth (PDF)
Next articleSelected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles (Progress in Astronautics and Aeronautics) by E. Hirschel (PDF)