Proof Theory (Grundlehren der mathematischen Wissenschaften, 225) by K. Schütte (PDF)

1

 

Ebook Info

  • Published: 2011
  • Number of pages: 314 pages
  • Format: PDF
  • File Size: 11.72 MB
  • Authors: K. Schütte

Description

This book was originally intended to be the second edition of the book “Beweis­ theorie” (Grundlehren der mathematischen Wissenschaften, Band 103, Springer 1960), but in fact has been completely rewritten. As well as classical predicate logic we also treat intuitionistic predicate logic. The sentential calculus properties of classical formal and semiformal systems are treated using positive and negative parts of formulas as in the book “Beweistheorie”. In a similar way we use right and left parts of formulas for intuitionistic predicate logic. We introduce the theory of functionals of finite types in order to present the Gi:idel interpretation of pure number theory. Instead of ramified type theory, type-free logic and the associated formalization of parts of analysis which we treated in the book “Beweistheorie”, we have developed simple classical type theory and predicative analysis in a systematic way. Finally we have given consistency proofs for systems of lI~-analysis following the work of G. Takeuti. In order to do this we have introduced a constni’ctive system of notation for ordinals which goes far beyond the notation system in “Beweistheorie”.

User’s Reviews

Keywords

Free Download Proof Theory (Grundlehren der mathematischen Wissenschaften, 225) in PDF format
Proof Theory (Grundlehren der mathematischen Wissenschaften, 225) PDF Free Download
Download Proof Theory (Grundlehren der mathematischen Wissenschaften, 225) 2011 PDF Free
Proof Theory (Grundlehren der mathematischen Wissenschaften, 225) 2011 PDF Free Download
Download Proof Theory (Grundlehren der mathematischen Wissenschaften, 225) PDF
Free Download Ebook Proof Theory (Grundlehren der mathematischen Wissenschaften, 225)

Previous articleA THEORY OF FORMAL DEDUCIBILITY. [Notre Dame Mathematical Lectures # 6] by Haskell Curry (PDF)
Next articleFrom Hodge Theory to Integrability and TQFT (Proceedings of Symposia in Pure Mathematics) by Ron Y. Donagi and Katrin Wendland (PDF)