
Ebook Info
- Published: 2001
- Number of pages: 435 pages
- Format: PDF
- File Size: 47.78 MB
- Authors: Michael I. Jordan
Description
This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithm and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research.Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research.ContributorsH. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodríguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss
User’s Reviews
Editorial Reviews: About the Author Michael I. Jordan is Professor of Computer Science and of Statistics at the University of California, Berkeley, and recipient of the ACM/AAAI Allen Newell Award.Terrence J. Sejnowski holds the Francis Crick Chair at the Salk Institute for Biological Studies and is a Distinguished Professor at the University of California, San Diego. He was a member of the advisory committee for the Obama administration’s BRAIN initiative and is President of the Neural Information Processing (NIPS) Foundation. He has published twelve books, including (with Patricia Churchland) The Computational Brain (25th Anniversary Edition, MIT Press).Tomaso A. Poggio is Eugene McDermott Professor in the Department of Brain and Cognitive Sciences at MIT, where he is also Director of the Center for Brains, Minds, and Machines and Codirector of the Center for Biological and Computational Learning. He is coeditor of Perceptual Learning (MIT Press).
Reviews from Amazon users which were colected at the time this book was published on the website:
⭐
⭐
Keywords
Free Download Graphical Models: Foundations of Neural Computation (Computational Neuroscience) 1st Edition in PDF format
Graphical Models: Foundations of Neural Computation (Computational Neuroscience) 1st Edition PDF Free Download
Download Graphical Models: Foundations of Neural Computation (Computational Neuroscience) 1st Edition 2001 PDF Free
Graphical Models: Foundations of Neural Computation (Computational Neuroscience) 1st Edition 2001 PDF Free Download
Download Graphical Models: Foundations of Neural Computation (Computational Neuroscience) 1st Edition PDF
Free Download Ebook Graphical Models: Foundations of Neural Computation (Computational Neuroscience) 1st Edition
