Arithmetical Functions (Grundlehren der mathematischen Wissenschaften, 167) 1970th Edition by Komaravolu Chandrasekharan (PDF)

14

 

Ebook Info

  • Published: 2012
  • Number of pages: 247 pages
  • Format: PDF
  • File Size: 12.41 MB
  • Authors: Komaravolu Chandrasekharan

Description

The plan of this book had its inception in a course of lectures on arithmetical functions given by me in the summer of 1964 at the Forschungsinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analysis and number theory. The arithmetical functions considered here are those associated with the distribution of prime numbers, as well as the partition function and the divisor function. Some of the problems posed by their asymptotic behaviour form the theme. They afford a glimpse of the variety of analytical methods used in the theory, and of the variety of problems that await solution. I owe a debt of gratitude to Professor Carl Ludwig Siegel, who has read the book in manuscript and given me the benefit of his criticism. I have improved the text in several places in response to his comments. I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the manuscript and correcting the proofs. K. Chandrasekharan July 1970 Contents Chapter I The prime number theorem and Selberg’s method § 1. Selberg’s fonnula . . . . . . 1 § 2. A variant of Selberg’s formula 6 12 § 3. Wirsing’s inequality . . . . . 17 § 4. The prime number theorem. .

User’s Reviews

Reviews from Amazon users which were colected at the time this book was published on the website:

⭐Libro molto bello sia per la scelta dei temi che per la (consueta) chiarezza espositiva tipica dei libri di Chandrasekharan.Il libro ormai datato (1970) si può’ considerare come il successore di “Introduction to Analytic Number Theory” dello stesso autore: mentre quest’ultimo tratta temi presenti in quasi tutti i libri introduttivi sul genere… così non è per “Arithmetical Functions” poiché contiene argomenti di teoria analitica dei numeri sì standard MA più avanzati e soprattutto raccolti nello stesso libro!A chi consiglio questo testo:a giovani appassionati di teoria analitica dei numeri che vogliano cimentarsi in qualcosa di più avanzato delle introduzioni… come il teorema dei numeri primi dimostrato con metodi elementari (teorema di A. Selberg), che vogliano scoprire perché la Zeta di Riemann abbia infiniti zeri sulla retta della congettura omonima più famosa… (teorema di Hardy) o ancora voglia capire come emerga il magnifico sviluppo in serie della funzione delle partizione (teorema di Rademacher) e molto altro.Ribadisco: separatamente sono argomenti presenti in molti altri libri ma la particolarità è nella chiarezza espositiva e nella raccolta tematica.

Keywords

Free Download Arithmetical Functions (Grundlehren der mathematischen Wissenschaften, 167) 1970th Edition in PDF format
Arithmetical Functions (Grundlehren der mathematischen Wissenschaften, 167) 1970th Edition PDF Free Download
Download Arithmetical Functions (Grundlehren der mathematischen Wissenschaften, 167) 1970th Edition 2012 PDF Free
Arithmetical Functions (Grundlehren der mathematischen Wissenschaften, 167) 1970th Edition 2012 PDF Free Download
Download Arithmetical Functions (Grundlehren der mathematischen Wissenschaften, 167) 1970th Edition PDF
Free Download Ebook Arithmetical Functions (Grundlehren der mathematischen Wissenschaften, 167) 1970th Edition

Previous articleNonlinear Wave Equations, Formation of Singularities (University Lecture Series) by Fritz John (PDF)
Next articleThe Riemann Hypothesis and Hilbert’s Tenth Problem (Mathematics & Its Applications) by S. Chowla (PDF)