
Ebook Info
- Published: 1997
- Number of pages: 368 pages
- Format: PDF
- File Size: 20.85 MB
- Authors: Donald T. Greenwood
Description
Since Lagrange laid the foundation of analytical dynamics some two centuries ago, the discipline has continued to evolve and develop, embracing the theories of Hamilton and Jacobi, Einstein’s relativity theory and advanced theories of classical mechanics.This text proposes to give graduate students in science and engineering a strong background in the more abstract and intellectually satisfying areas of dynamical theory. It is assumed that students are familiar with the principles of vectorial mechanics and have some facility in the use of this theory for analysis of systems of particles and for rigid-body rotation in two and three dimensions.After a concise review of basic concepts in Chapter 1, the author proceeds from Lagrange’s and Hamilton’s equations to Hamilton-Jacobi theory and canonical transformations. Topics include d’Alembert’s principle and the idea of virtual work, the derivation of Langrange’s equation of motion, special applications of Lagrange’s equations, Hamilton’s equations, the Hamilton-Jacobi theory, canonical transformations and an introduction to relativity.Problems included at the end of each chapter will help the student greatly in solidifying his grasp of the principal concepts of classical dynamics. An annotated bibliography at the end of each chapter, a detailed table of contents and index, and selected end-of-chapter answers complete this highly instructive text.
User’s Reviews
Reviews from Amazon users which were colected at the time this book was published on the website:
⭐Actualmente estoy cursando la carrera de licenciatura en física, he tenido experiencia con bastantes libros de mecánica clásica (los mas típicos como algunos menos conocidos) y la verdad me sorprende que este libro no sea parte de la literatura estándar para estudiar mecánica clásica porque la verdad es una joya.Me compré este libro sin ningun tipo de expectativa, uno mas para mi estantería y que hojearia un par de veces con tal de intentar entender un concepto que no pude en otro libro, pero fué una completa sorpresa el darme cuenta que a medida que más y más estudia desde este libro más me comenzaba a gustar.Este libro tiene 7 capítulos:1)Introductory concepts: En este capitulo te enseñan las bases de la mecánica teórica. Encuentras conceptos como Sistemas mecánicos, coordenadas generalizadas, los tipos de constraints que existen y cómo identificar sistemas en base a ello además de una discusión acerca del principio de d’alembert y energía y momentum desde este principio además que deriva la ecuación E-L desde d’alembert.2)Lagrange’s equations: Este capitulo tiene una discusión bastante típica acerca de las ecuaciones de lagrange. Deriva la ecuación E-L desde una variación. Aqui puedes encontrar cosas tales como ejemplos de sistemas físicos desde E-L, integrales de movimiento (una discusión acerca del procedimiento de Routhian) y finalmente pequeñas oscilaciones.3)Special applications of lagrange’s equations: Este capitulo ha sido de los que menos he leido pero es debido a que no lo he necesitado tanto para mi carrera. Aqui trata temas como movimiento impulsivo, sistemas giroscopicos y potenciales dependientes de velocidad [U(q,v,t)]4) Hamilton’s equations: Este capítulo es una joya desde principio a fín, es una discusión muy clara acerca de las ecuaciones de hamilton, del espacio fase y tiene una sección donde deriva el principio de mínima acción. Trata temas como principio de hamilton. Ecuaciones de hamilton. Otros principios variacionales. Espacio fase.5)Hamilton-Jacoby theory: Este capítulo está orientado a teoría hamilton jacobi, la verdad no hay mucho que decir aqui, una discusión bastante típica6)Canonical transformations: En este capítulo se discute de forma detallada y profunda la teoría de las transformaciones canónicas, a modo personal diría que esta discusión es incluso mejor que la desarrollada en el goldstein además de tratar la teoría hamilton-jacobi como un caso particular de estas. Tienes secciones tales como formas diferenciales y funciones generatrices, transformaciones especiales, corchete de lagrange y poisson, transformaciones temporales y condiciones necesarias, formulacion matricial de las transformaciones y transformacion canónica infinitesimal.7)Introduction to relativity. Aqui no tengo nada que decir ya que no he leido este capítulo, aún lo tengo en deuda.En resumen este libro es muy bueno, vale completamente la pena y es muy util para el aprendizaje autónomo ya que tiene las respuestas a varios ejercicios (no todos) en la parte de atrás. No me arrepiento en ningun momento de la compra, ha sido de las mejores que he realizado y siempre que me preguntan qué libro es bueno para estudiar mecánica clásica es imposible que no les mencione este. Como ultimo comentario, este libro puede resultar a veces dificil de leer, solo ten paciencia y relee hasta entender.
⭐
⭐Excellent problem sets with solutions following each chapter. Highly recommended for Physics/Engineering undergrads in preparation for coursework in quantum mechanics and gauge theory. The book also serves as a handy reference for related advanced engineering requirementsin your chosen curriculum including professional development. Thank you.
⭐Bought this book as an extremely inexpensive supplement to a book on intermediate dynamics I am studying right now.This author is an authority on the field, and the book contains what I need: examples and extra work.
⭐It is a classical and well-known book for linear dynamic. It is not for undergrad students.
⭐Wonderful textbook, great price.If you like Dynamics, buy this book, you won’t regret it.
⭐Very interesting and well written! I enjoyed it and found it very helpful.
⭐Writing a great Mechanics text is as difficult as writing a great Electromagnetism text. What to include ? What to omit ? Happily, Greenwood has presented the student with a well-written, almost-advanced, textbook. Pitched at a level comparable to Goldstein’s Classical Mechanics and less advanced than Scheck, there is much to recommend here:(1) Greenwood is pedagogic: Many examples (solved in detail) amplify the discussion (for instance, particle affixed to rotating cylindrical tube, is discussed on more than one occasion, by differing methods: read page 62 and page 75). Therein lies one of his strengths, a ‘spiral’ approach to the material: Earlier examples reappear later in the text, as more advanced methods are utilized.(2) The mathematics held at a fairly pedestrian level. Mary Boas, for instance, will provide for preparation. A course in elementary mechanics is prerequisite, for which Griffiths and Synge is the prime reference (as Greenwood notes). As with Goldstein, the first chapter provides a summary of elementary mechanics.(3) You gain improved outlook on the difference between virtual and actual displacement. You will gain understanding of generalized coordinates. Stability, you get it more than once (elementary, page 32) then advanced, with gyroscopes (section 3-3, page 127). Reiterating: a spiral approach.(4) I highlight the discussion of impulsive motion (pages 104-121). This is an exceptional exposition. An example of four rods, four masses, struck at one point–is worth exploring– as the author does, in more than one way (page 116).(5) Chapter four, Hamilton: explained as lucidly as any other text. I found the discussion of Legendre transformation less confusing than others (compare Goldstein). Least Action Principle while brief, is lucid (pages 174-178). Continuing the theme of chapter four, chapter five delves into Hamilton-Jacobi. An exceptional section, separability and partial differential equations, is a welcome addition. And, with it, another attack on Kepler’s problem (page 209). You met Kepler often previously in the text, now you get another, more advanced, presentation. Reiterating: spiral approach.(6) Canonical Transformations. Excellent solved examples to assist in digesting the material. (For instance, pages 219 and 223). The mass-spring system, in multiple guises, is utilized throughout the text. Spiral ! The entire Chapter is an exceptionally lucid exposition. Poisson brackets need not appear mysterious (pages 241-247). The chapter concludes with another approach to Liouville’s theorem. You get it more than once.(7) Finally, Special Relativity. You get a no-nonsense, elementary discussion. You get no mystic ‘imaginary’ coordinate for time. You do get accurate explication of invariant intervals, proper time, and accelerated motion (hyperbolic–see pages 315-320). A very good discussion of the conception of Newtonian ‘force’ and its ‘shortcoming’ in Special Relativity is offered (pages 305-306). Nothing needs be re-learned later.(8) Concluding, Answers to most problems are included. If not, hints are supplied. Excellent pedagogy. Some of the problems are easy, some are challenging. Greenwood’s solved examples–throughout–are exceptional and explicit. This is a text for students. An excellent addition to the literature. Worth perusing.If Goldstein gets confusing at any juncture, I recommend study of Greenwood.
⭐Libro completo que cubre los temas de mecánica analítica para un curso de física
⭐
⭐wounderful book from amazon and us. this book is very useful to post graduate students!
⭐Good book for classical dynamics.
⭐I want to return this kindle edition…its not worth for the price…Can anyone guide me..i dont know how to return this….amazon please help me
⭐Nicr
Keywords
Free Download Classical Dynamics (Dover Books on Physics) in PDF format
Classical Dynamics (Dover Books on Physics) PDF Free Download
Download Classical Dynamics (Dover Books on Physics) 1997 PDF Free
Classical Dynamics (Dover Books on Physics) 1997 PDF Free Download
Download Classical Dynamics (Dover Books on Physics) PDF
Free Download Ebook Classical Dynamics (Dover Books on Physics)