Induced Modules Over Group Algebras by Gregory Karpilovsky (PDF)

    2

     

    Ebook Info

    • Published: 2012
    • Number of pages: 532 pages
    • Format: PDF
    • File Size: 9.15 MB
    • Authors: Gregory Karpilovsky

    Description

    In 1898 Frobenius discovered a construction which, in present terminology, associates with every module of a subgroup the induced module of a group. This construction proved to be of fundamental importance and is one of the basic tools in the entire theory of group representations. This monograph is designed for research mathematicians and advanced graduate students and gives a picture of the general theory of induced modules as it exists at present. Much of the material has until now been available only in research articles. The approach is not intended to be encyclopedic, rather each topic is considered in sufficient depth that the reader may obtain a clear idea of the major results in the area. After establishing algebraic preliminaries, the general facts about induced modules are provided, as well as some of their formal properties, annihilators and applications. The remaining chapters include detailed information on the process of induction from normal subgroups, projective summands of induced modules, some basic results of the Green theory with refinements and extensions, simple induction and restriction pairs and permutation modules. The final chapter is based exclusively on the work of Weiss, presenting a number of applications to the isomorphism problem for group rings.

    User’s Reviews

    Keywords

    Free Download Induced Modules Over Group Algebras in PDF format
    Induced Modules Over Group Algebras PDF Free Download
    Download Induced Modules Over Group Algebras 2012 PDF Free
    Induced Modules Over Group Algebras 2012 PDF Free Download
    Download Induced Modules Over Group Algebras PDF
    Free Download Ebook Induced Modules Over Group Algebras

    Previous articleCounting, Sampling and Integrating: Algorithms and Complexity (Lectures in Mathematics. ETH Zürich) 2003rd Edition by Mark Jerrum (PDF)
    Next articleRudiments of Calculus (ISSN Book 146) 1st Edition by A. Arnold (PDF)