Ebook Info
- Published: 1991
- Number of pages: 157 pages
- Format: PDF
- File Size: 22.94 MB
- Authors: Alexei A. Panchishkin
Description
The main subject of the book is the arithmetic of zeta functions of automorphic forms. More precisely, it looks at p-adic properties of the special values of these functions. For the Riemann-zeta function this goes back to the classical Kummer congruences for Bernoulli numbers and their p-adic analytic continuation of the standard zeta functions of Siegel and modular forms and of the convolutions of Hilbert modular forms. The book is addressed to specialists in representation theory, functional analysis and algebraic geometry. Together with new results, it provides considerable background information on p-adic measures, their Mellin transforms, Siegel and Hilbert modular forms, Hecke operators acting on them, and Euler products.
User’s Reviews
Reviews from Amazon users which were colected at the time this book was published on the website:
⭐
⭐
Keywords
Free Download Non-Archimedean L-Functions: Of Siegel and Hilbert Modular Forms: Associated with Siegel and Hilbert Modular Forms (Lecture Notes in Mathematics) in PDF format
Non-Archimedean L-Functions: Of Siegel and Hilbert Modular Forms: Associated with Siegel and Hilbert Modular Forms (Lecture Notes in Mathematics) PDF Free Download
Download Non-Archimedean L-Functions: Of Siegel and Hilbert Modular Forms: Associated with Siegel and Hilbert Modular Forms (Lecture Notes in Mathematics) 1991 PDF Free
Non-Archimedean L-Functions: Of Siegel and Hilbert Modular Forms: Associated with Siegel and Hilbert Modular Forms (Lecture Notes in Mathematics) 1991 PDF Free Download
Download Non-Archimedean L-Functions: Of Siegel and Hilbert Modular Forms: Associated with Siegel and Hilbert Modular Forms (Lecture Notes in Mathematics) PDF
Free Download Ebook Non-Archimedean L-Functions: Of Siegel and Hilbert Modular Forms: Associated with Siegel and Hilbert Modular Forms (Lecture Notes in Mathematics)